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Abstract. In quasicrystals, there are not only conventional, but also phason displacement fields and asso-
ciated Burgers vectors. We have calculated approximate solutions for the elastic fields induced by two-,
three- and fivefold straight screw- and edge-dislocations in infinite icosahedral quasicrystals by means of
a generalized perturbation method. Starting from the solution for elastic isotropy in phonon and phason
spaces, corrections of higher order reflect the two-, three- and fivefold symmetry of the elastic fields sur-
rounding screw dislocations. The fields of special edge dislocations display characteristic symmetries also,
which can be seen from the contributions of all orders.

PACS. 61.44.Br Quasicrystals – 61.72.Lk Linear defects: dislocations, disclinations – 62.20.Dc Elasticity,
elastic constants

1 Introduction

It has been demonstrated frequently (see, e.g., [1]) that in
quasicrystals, as in periodic crystals, plasticity is caused
by dislocations moving under external stresses. If the elas-
tic fields around dislocations are known, their influence on
the lattice and the interaction between dislocations can be
calculated. In quasicrystals, dislocations are surrounded
not only by phononic, but also by phasonic elastic fields.
They are described by a generalization of the standard
elastic equations. The generalized elastic theory has be-
come a powerful and important tool for studying the me-
chanical behaviour of quasicrystals.

The dislocation problem is solved when the medium’s
elastic Green’s function is available. The elastic Green’s
function has been established in closed form for
isotropic [2] and hexagonal [3] ordinary media, and for
pentagonal [4], decagonal and dodecagonal [5] quasicrys-
tals. An approximate solution for the elastic Green’s func-
tion of icosahedral quasicrystals is given in [6]. In this
paper, the results are obtained by direct solution of the
equations of balance instead by use of Green’s method.

Analytical solutions for the elastic fields around dis-
locations exist only for the above mentioned cases [2–5].
In this paper, we present the solution for icosahedral qua-
sicrystals in terms of appropriate perturbation series.

The structure of the paper is as following. Starting
from the density wave picture, we summarize in Section 2
the generalized elastic theory of icosahedral quasicrystals,
including dislocation elastic theory. Section 3 deals with
the generalized projection method as one possibility to
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solve the dislocation problem. Here we present a set of re-
cursion formulae, which can be used to calculate pertur-
bation expansions of the elastic fields. In the last section,
we discuss displacement fields induced by different types
of fivefold dislocations in icosahedral quasicrystals.

Most concepts and notations in this paper are identical
to those used in [6].

2 Elastic theory of icosahedral quasicrystals

2.1 Some fundamentals

A quasicrystal is a translationally ordered structure with
sharp diffraction pattern exhibiting non-crystallographic
symmetry. For this reason, its mass density ρ(x) can be
written as a sum over density waves:

ρ(x) =
∑
k∈L

ρkeik·x =
∑
k∈L

|ρk|ei(k·x+φk) . (1)

Here, L is a module over the reciprocal quasilattice. The
numbers φk are the phases of the complex coefficients ρk.

For icosahedral quasicrystals, the diffraction pattern
and L display icosahedral point symmetry. Six vectors kα,
α = 1, . . . , 6, pointing to appropriate six of the vertices of
an icosahedron can serve as a basis of L. Phenomenolog-
ical Landau theory [7,8] shows that there are six degrees
of freedom, which can be interpreted as the phases φkα

of the basis vectors. Thus, a frequently used approach is
the extension of the density (1) to the density of a peri-
odic structure in six-dimensional hyperspace, which can
be subjected to a six-dimensional displacement field γ.
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Fig. 1. The projections P‖eα of the six natural hyperspace
basis vectors eα onto E‖. From [9].

(1) is recovered by a cut of the hyperperiodic structure by
physical space [9]. A parametrization of the φk is

φk = φk,0 − κ · γ , (2)

which involves vectors κ belonging to the reciprocal hy-
perlattice in six dimensions. The set {κα}must be linearly
independent over the real numbers and serves as basis of
the reciprocal hyperlattice, which is usually chosen to be
hypercubic. Then, the direct hyperlattice is hypercubic
also, with basis vectors %β , β = 1, . . . , 6, defined by [7]

κα · %β = 2π δαβ . (3)

The icosahedral group Y acts on the hyperspace ac-
cording to the reducible six-dimensional representation
Γ 6 = Γ 3 ⊕ Γ 3′ . The hyperspace decomposes into two or-
thogonal, three-dimensional invariant subspaces E‖ and
E⊥, belonging to the irreducible representations Γ 3 (vec-
tor representation) and Γ 3′ of Y. E‖ is the physical or
parallel space and E⊥ the perpendicular space. Two pro-
jection operators P‖ and P⊥ can be applied to hyper-
space vectors to obtain their respective components in E‖
and E⊥. This procedure is shown in Figures 1, 2 for the
ortho-normal natural basis {eα}, spanning a hypercube in
six-dimensional hyperspace.

All quantities depend on the physical space coordi-
nates x‖ = x only. Because of the orthogonality of E‖
and E⊥, equation (2) can be written

φk = φk,0 − k‖ · u− k⊥ ·w . (4)

Notations κ = k‖⊕k⊥ and γ = γ‖⊕γ⊥ = u⊕w are used,
where k‖ = k ∈ L. u is the ordinary phonon displacement,
whose character is propagating. w is the phasonic dis-
placement with diffusive character [10]. In the atomic pic-
ture, non-vanishing w-fields lead to local rearrangements
of atoms, which are called phasonic flips.

Fig. 2. The projections P⊥eα of the six natural hyperspace
basis vectors eα onto E⊥. From [9].

Spatially varying γ and φk, respectively, belong to de-
formed states, which can be described by the elastic tensor
fields of distortion β and strain ε defined by

du = βudx , dw = βwdx , β =

[
βu

βw

]
, (5)

εu =
1
2
(
βu + βu,t

)
, εw = βw , ε =

[
εu

εw

]
. (6)

In case of single-valued displacement fields u and w,

βuij =
∂ui
∂xj

, βwij =
∂wi
∂xj

, (7)

εuij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, εwij =

∂wi
∂xj

, (8)

where i, j ∈ {1, 2, 3}. The six symmetric and three anti-
symmetric components of βw mix under the action of Y,
and therefore no invariants can be constructed from the
symmetric or antisymmetric components of βw only. So
due to (6), the phason strain tensor εw must be the full
βw to contribute to the elastic energy density F .

The relations (6) and (8) hold in the linear regime
| ∂ui∂xj
|, |∂wi∂xj

| � 1, which we are interested in. Linear elas-
ticity is described by an elastic energy density which is an
Y-invariant quadratic form of the components of ε:

F =
1
2
Cαiβj εαi εβj =

1
2
εC ε . (9)

Here, the Greek indices α, β ∈ {1, . . . , 6} refer to E‖

(α, β ∈ {1, 2, 3}) and to E⊥ (α, β ∈ {4, 5, 6}). This is
different from the meaning of α, β in equation (3).
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Differentiation of (9) leads to the generalized Hooke’s
law:

σαi =
∂F

∂εαi
= Cαiβj εβj , σ = C ε , (10)

with the generalized stress field

σ =

[
σu

σw

]
, (11)

where σu = σu,t is symmetric. The stress tensors σu,w,
applied to normal vectors n of real or fictitious surfaces
in physical space, lead to surface forces tu,w = σu,wn,
which must be applied to keep the system in balance.
These forces have components in E‖ and E⊥, respectively,
and are combined to t = tu ⊕ tw [11]. Besides the con-
ventional body force fu, an analogous force fw with direc-
tion in E⊥ has to be introduced to formulate the general-
ized equations of balance consistently. We use the notation
f = fu ⊕ fw.

Hooke’s law can be formulated very simply with the
help of group theory. Due to equations (6), εu transforms
as the representation (Γ 3 ⊗ Γ 3)sym = Γ 1 ⊕ Γ 5 under ac-
tions of Y, whereas εw transforms as Γ 3⊗Γ 3′ = Γ 4⊕Γ 5.
The transformations of the components of σu,w are quite
the same. With the irreducible strain components related
to the coordinate systems of Figures 1 and 2,

εu1 = [εuΓ 1
1
]t = [εuΓ 1

1
] , εu5 = [εuΓ 5

1
, . . . , εuΓ 5

5
]t ,

εw4 = [εwΓ 4
1
, . . . , εwΓ 4

4
]t ,εw5 = [εwΓ 5

1
, . . . , εwΓ 5

5
]t ,

(12)

(see [12] and Appendix A) and analogous vectors con-
taining the irreducible stresses, Hooke’s law reads

σu1
σu5
σw4
σw5

 =


µ1 0 0 0
0 µ2 0 µ3

0 0 µ4 0
0 µ3 0 µ5



εu1
εu5
εw4
εw5

 . (13)

Since only equal-indexed components of the same irre-
ducible representation can interact with each other, the
number of independent second-order elastic constants is
restricted to five. The elastic energy density correspond-
ing to (13) is

F =
1
2
µ1 ε

u
1 · εu1 +

1
2
µ2 ε

u
5 · εu5 + µ3 ε

u
5 · εw5

+
1
2
µ4 ε

w
4 · εw4 +

1
2
µ5 ε

w
5 · εw5 . (14)

A comparison with (9) yields the coefficients Cαiβj . In
Appendix C, we discuss the conventions for independent
elastic constants used by other authors.

Mechanical stability requires F > 0 for every ε 6= 0,
which is fulfilled when all eigenvalues of the elastic tensor
of (13) are positive. This leads to the following constraints
on the elastic constants: µ1 > 0, µ2 > 0, µ4 > 0, µ5 > 0,
and µ2µ5 > µ2

3.

According to (13) and (14), the elastic constants µ1

and µ2 describe pure phonon elasticity. Without phason
elasticity, for example on a short time scale, icosahedral
quasicrystals behave like isotropic media with the two
Lamé-constants

λ =
1
3

(µ1 − µ2) , µ =
1
2
µ2 . (15)

They can be measured by ultrasound transmission [13].
The elastic constants µ4 and µ5 belong to pure phason
elasticity. They are determined currently only indirectly
from diffuse scattering around Bragg peaks [14]. Values
for the phonon-phason-coupling µ3 have been calculated
in computer simulations to have much smaller absolute
values than the two phononic elastic constants [15].

Isotropic phonon elasticity in thermal equilibrium re-
quires decoupled phonon and phason elasticity, i.e. µ3 = 0.
Isotropy in phason elasticity is given in the spherical ap-
proximation µ4 = µ5 discussed in [6], in addition to the
condition µ3 = 0.

Gauss’ theorem, applied to equation (10), provides
the well-known elastic equations of balance in generalized
form:

divσ + f = 0 ,
∂

∂xi
σαi + fα = 0 , (16)

where f1 = fux , . . . , f6 = fwz . With the help of Hooke’s
law and (8), divσ can be written in terms of the dis-
placement field γ:

divσ = D(∇)γ , (divσ)α = Dαβ(∇) γβ , (17)

Dαβ(∇) = Cαiβj
∂2

∂xi∂xj
· (18)

Here, γ1 = ux, . . . , γ6 = wz . According to (17), the
equations of balance (16) result in

D(∇)γ + f = 0 . (19)

Equation (19), f = fu ⊕ fw and γ = u ⊕ w imply a de-
composition of D(∇) into four 3× 3 blocks:

D(∇) =

[
Duu(∇) Duw(∇)
Dwu(∇) Dww(∇)

]
. (20)

Explicitly, we have1

Duu(∇) = µ1∇2 + (λ+ µ)∇⊗∇ ,
Duw(∇) = Dwu,t(∇)

=
µ3√

6

F1(x, y, z) F3(x, y) F2(x, z)
F2(y, x) F1(y, z, x) F3(y, z)
F3(z, x) F2(z, y) F1(z, x, y)

 ,
Dww(∇) = µ5 1∇2

+
µ4 − µ5

3

F4(x, y, z) F5(x, y) F5(x, z)
F5(y, x) F4(y, z, x) F5(y, z)
F5(z, x) F5(z, y) F4(z, x, y)

 .

(21)

1 Here, some printing errors of reference [6] have been elim-
inated.
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In (21), we have used the abbreviations

F1(a, b, c) = − ∂2

∂a2
− 1
τ

∂2

∂b2
+ τ

∂2

∂c2
,

F2(a, b) = −2
τ

∂2

∂a∂b
,

F3(a, b) = 2τ
∂2

∂a∂b
, (22)

F4(a, b, c) =
∂2

∂a2
+ τ2 ∂

2

∂b2
+

1
τ2

∂2

∂c2
,

F5(a, b) = 2
∂2

∂a∂b
·

τ = 1
2 (1+

√
5) is the Golden Mean, defined as the positive

root of the quadratic equation x2 − x− 1 = 0.

2.2 Green’s function of the elastic equations of balance

The solution of (19) for arbitrary body forces f can be
obtained by calculating the integral

γ(x) =
∫

G(x− x′) f(x′) d3x′ , (23)

where G(x−x′) is the elastic Green’s function of icosahe-
dral quasicrystals. The constitutive equation for G(x) is

D(∇) G(x) + 1 δ(x) = 0 . (24)

An approximate solution for G(x) is given in [6]. Since
(21) are the components of D(∇) for linear elasticity, the
displacement field provided by (23) is the correct solution
only in domains where the linearity conditions are fulfilled.

For the purpose of this work, we only need to know the
solution G00(x) for elastic isotropy in phonon and phason
spaces, defined by the conditions µ3 = 0 and µ4 = µ5.
With the well-known elastic Green’s function for three-
dimensional, isotropic media [2] and the solution of the
fundamental Poisson’s equation in three dimensions, the
exact G00(x), which reflects decoupled phonon and pha-
son elasticity, is

Guu
00 (x) =

1
8πµ(λ+ 2µ)

[
(λ+ 3µ)

1
|x| 1 + (λ + µ)

x⊗ x
|x|3

]
,

Gww
00 (x) =

1
4πµ5|x|

1 ,

Guw
00 (x) = Gwu

00 (x) = 0 .
(25)

2.3 Elastic theory of dislocations

A dislocation D is characterized by its non-vanishing line
integral∮

∂FD

dφk = 2πmk , mk = 0,±1,±2, . . . , (26)

along any closed contour ∂FD surrounding the core of D ,
which exists in physical space only [16,17]. Equation (26)
guarantees for the continuity of the mass density ρ(x) out-
side the dislocation core, as can be seen from (1). In case
of periodic crystals, the lattice remains unaltered outside
the dislocation core. Because of phasons, the same is not
true in quasicrystals [18].

From equation (2), condition (26) can be expressed in
terms of κ and dγ:∮

∂FD

κ · dγ = −2πmk . (27)

The six-dimensional Burgers vector is b = bu⊕bw, where
bu, bw and b are defined

bu =
∮
∂FD

du , bw =
∮
∂FD

dw , b =
∮
∂FD

dγ . (28)

This allows us to rewrite (27) in the form

κ · b = k‖ · bu + k⊥ · bw = −2πmk . (29)

As a conclusion from (3) and (29), b must be a vector of
the direct hyperlattice. The irrational orientations of E‖
and E⊥ in hyperspace provide non-vanishing components
bu and bw for every dislocation.

Because of equations (28), the displacement fields
of dislocations are multiple-valued, and therefore not
integrable. According to potential theory, the non-
integrability of equations (5) corresponds to curlβu,w 6= 0.
From Stokes’ theorem,

bu,w =
∮
∂FD

d(u,w) =
∮
∂FD

βu,w dx

=
∫
FD

curlβu,w df =
∫
FD

αu,w df , (30)

where the surface integrals extend over the surface FD,
bounded by ∂FD and pierced by the dislocation D. Be-
cause of equation (30), the tensors αu,w are dislocation
densities in phonon and phason spaces per area of physi-
cal space. It is

αu,w = curlβu,w , αu,wij = εjkl
∂βu,wil
∂xk

· (31)

Equations (31), in connection with boundary conditions
to be fulfilled, are the defining equations for βu,w.

By means of equations (6), the elastic distortion fields
βu,w lead to the strain fields εu,w. Connected with the
elastic strain fields of dislocations are stress fields (10). In
the absence of body forces f , they must fulfill equation (16)
in the form

divσ = 0 . (32)

3 Solving the problem of a single dislocation

Elastic fields fulfilling equations (10, 28) and (32) simulta-
neously constitute the solution of the dislocation problem.
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Note that equations (28) for a single dislocation are a spe-
cial case of the general situation, which is characterized by
an incompatibility field [19]. The projection method [20]
is a possibility to solve the dislocation problem. A sum-
mary, containing the description of several other methods,
is given in [21].

3.1 The projection method

The idea of the projection method is the following. In a
first step, an arbitrary, multiple-valued displacement field
γ̂ = û⊕ ŵ fulfilling (28),

bu =
∮
∂FD

dû , bw =
∮
∂FD

dŵ , b =
∮
∂FD

dγ̂ , (33)

has to be found. According to equation (5), this displace-
ment field leads to distortions, and from (6) the corre-
sponding eigenstrains ε̂u,w can be calculated. But the
eigenstress field σ̂ = C ε̂ will not be compatible with the
equations of balance (32) in general. There may exist a
divergence div σ̂ 6= 0.

In the second step, a single-valued displacement field
γ̌ = ǔ⊕ w̌, leading to strain fields ε̌u,w and stresses σ̌ =
C ε̌, due to equations (8) and (10), respectively, has to
be found. γ̌ has to be determined in such a way, that the
divergence of the total stress field σ = σ̂ + σ̌ vanishes:

divσ = div (σ̂ + σ̌) = 0. (34)

In this step, the stress field σ̂ is projected from the space
of stress fields with arbitrary divergence onto the space
of stresses with vanishing divergence. The result of this
projection is the true stress field σ. Since the displacement
field γ̌ is single-valued, we have∮

∂FD

dǔ = 0 ,
∮
∂FD

dw̌ = 0 ,
∮
∂FD

dγ̌ = 0 . (35)

Finally, the elastic fields of the dislocation are

γ = γ̂ + γ̌ , ε = ε̂+ ε̌ , σ = σ̂ + σ̌ . (36)

Equation (10) is satisfied because we have used (σ̂, σ̌) =
C (ε̂, ε̌). (28) is fulfilled because of equations (33) and (35).
(32) is true due to equation (34). γ is multiple-valued
because γ̂ is, whereas ε and σ are single-valued.

The problem of finding the right γ̌ can be solved as
described below. The equations of balance (19) read for
the case of the displacement field γ̌

D(∇) γ̌ + f̌ = 0 , (37)

where D(∇) γ̌ = div σ̌. Comparing (37) with equa-
tion (34) leads to the identification

f̌ = div σ̂ (38)

for the right f̌ to be used as fictitious body force in (37)
in order to calculate γ̌. Therefore, in the second step of
the projection method, the equations of balance

D(∇) γ̌ + div σ̂ = 0 (39)

have to be solved. We want to stress that the body force
f̌ = div σ̂ is not a real force.

The projection method amounts to adding a singular
displacement field and a non-singular one in order to sat-
isfy equation (32), which is not yet fulfilled after the first
step. The splitting up into a singular and a non-singular
part and the introduction of local axes, as done below, has
already been discussed in [16].

3.2 Symmetry-adapted coordinate systems

In this paper, we consider straight dislocations D hav-
ing two-, three- and fivefold line directions. For simplicity,
a coordinate system Ku

D with its zu-axis parallel to the
respective dislocation line of D should be used in physi-
cal space. There arise certain symmetries from phasonic
Burgers vectors, which can be seen clearly when addition-
ally choosing the zw-axis of the new coordinate system
Kw
D in phason space parallel to that symmetry axis, which

corresponds to the line direction in physical space.
The difference between the two-, three- and fivefold

dislocation lines lies in different components of the elastic
tensor C. The components Cαiβj resulting from (9, 14)
belong to the coordinate systems of Figures 1, 2, which
are appropriate coordinate systems for twofold disloca-
tions. The components CD,αiβj of the elastic tensors in
symmetry-adapted coordinate systems for the three- and
fivefold dislocations are obtained by coordinate transfor-
mations.

Consider orthogonal transformations in phonon and
phason spaces,

vuD,i = ΓuD,ij v
u
j , vwD,i = ΓwD,ij v

w
j , (40)

connecting the components of the vector v in the symme-
try-adapted coordinate systems with its components be-
longing to the coordinate systems of Figures 1, 2. The
transformations of the strain components are then

εuD,ij = ΓuD,ikΓ
u
D,jlε

u
kl , εwD,ij = ΓwD,ikΓ

u
D,jlε

w
kl . (41)

Explicitly, we have taken

Γ u3 = c1

1 0 0
0 τ2 −1
0 1 τ2

 , Γw3 = c1

1 0 0
0 1 −τ2

0 τ2 1

 ,
Γ u5 = c2

 τ 0 −1
0 1 0
1 0 τ

 , Γw5 = c2

 1 0 τ
0 1 0
−τ 0 1


(42)

as orthogonal transformation matrices in (40). They re-
sult from choosing the directions P‖(e3 + e4 − e6) and
P‖e3, respectively, as dislocation lines in Figure 1. The
coefficients c1, c2 are

c1 =
1√

1 + τ4
, c2 =

1√
1 + τ2

· (43)
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When substituting the components εu,wij of equation (9) by
components εu,wD,ij , due to the inversion of equations (40),
the components CD,αiβj are obtained.

The positions in phonon space are best described by
cylindrical coordinates r and φ, beside the Cartesian coor-
dinates x, y in the symmetry-adapted coordinate systems.
From now on, we use the notation x = [x, y]t for the po-
sition perpendicular to the dislocation lines.

3.3 Generalized differentiation and its application
to the projection method

The best γ̂ to start with in the first step of the projection
method is

γ̂ =
b
2π

φ . (44)

The resulting distortion and strain fields are

ε̂w = β̂
u,w

=
1

2π(x2 + y2)

−b
u,w
1 y bu,w1 x 0

−bu,w2 y bu,w2 x 0
−bu,w3 y bu,w3 x 0

 ,
ε̂u =

1
4π(x2 + y2)

 −2 bu1y bu1x− bu2y −bu3y
bu1x− bu2y 2 bu2x bu3x

−bu3y bu3x 0

 .
(45)

The corresponding dislocation densities α̂u,w (31) are 0
for x 6= 0. To consider the behaviour at x = 0, where
no partial derivatives in classical sense are defined, one
has to assume all functions to be generalized functions
and calculate the generalized partial derivatives [22]. Note
that, because of (44) and (45), the linear elasticity breaks
down below a finite cut-off distance from the dislocation
line.

In case of homogeneous functions f of degree −1 in
two variables x, y, the generalized partial derivatives are

∂f

∂x
=
∂f

∂x

∣∣∣∣
G

+ δ(x)
∮
∂G

f dy ,

∂f

∂y
=
∂f

∂y

∣∣∣∣
G

− δ(x)
∮
∂G

f dx ,
(46)

where the respective first expressions represent certain
generalized functions connected with the classical partial
derivatives. G is any bounded region containing the ori-
gin x = 0. Equations (46) indicate that there may be δ-
functions on the dislocation lines. Their respective weight
may depend on the choice of G, but becomes indepen-
dent of G when considering any combination of general-
ized partial derivatives with the total classical derivative
vanishing.

Calculating the dislocation densities (31) results in

α̂u,wij = δj3 δ(x)
∮
∂G

[
β̂u,wi1 dx+ β̂u,wi2 dy

]
= δj3

bu,wi
2π

δ(x)
∮
∂G

[ ∂φ
∂x

dx+
∂φ

∂y
dy
]

= δj3
bu,wi
2π

δ(x)
∮
∂G

dφ = δj3 b
u,w
i δ(x) . (47)

Therefore, the dislocation densities are point-like,

α̂u,w = δ(x)
[
0, 0, bu,w

]
. (48)

According to (35), α̌u,w ≡ 0.
From equations (10) and (45), the stress field σ̂ enter-

ing the projection method in the second step is homoge-
neous of degree −1. Therefore, equations (46) apply when
calculating div σ̂.

In the second step of the projection method, the solu-
tion of (39) is split into further two steps. In a first step,
(39) is solved for x 6= 0. This means that only the classical
derivatives (div σ̂)|x 6=0 enter (39). Denoting the solution
γ′, equation (39) becomes for x 6= 0

D(∇)γ ′ + div σ̂ = 0 . (49)

The displacement field γ′ leads to the strain field ε′ and
the stress field σ′, due to (8) and (10). The divergence
of the stress field σ̂ + σ′ will vanish when considering
classical derivatives only, but may still have components
proportional to δ(x). In a second step, these point-like
stress sources have to be compensated. With div (σ̂+σ′) =
δ(x) f ′′L, equation (39) becomes

D(∇)γ ′′ + δ(x) f ′′L = 0 . (50)

Here, f ′′L is a constant vector having the unit of a force per
length. The solution γ′′ leads to the strain field ε′′ and the
stress field σ′′. The final results entering equations (36) are

γ̌ = γ ′ + γ ′′ , ε̌ = ε′ + ε′′ , σ̌ = σ′ + σ′′ . (51)

In a short excursion, we want to discuss the meaning
of the divergence δ(x) f ′′L of the stress tensor on the dislo-
cation lines. According to (46),

f ′′L,α =
∮
∂G

[
(σ̂ + σ′)α1 dy − (σ̂ + σ′)α2 dx

]
. (52)

(52) is the α-component of

t′′L =
∮
∂G

t′′ ds =
∮
∂G

(σ̂ + σ′)n ds , (53)

where t′′ is the six-dimensional surface force remaining af-
ter the divergence of the stress tensor in terms of classical
derivatives has been brought to zero. t′′L represents the net
force per length of the zu-axis acting on the interior of G,
which must vanish [23].
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3.4 Recursion formulae

Unfortunately, there is no possibility to calculate γ̌ in the
second step of the projection method exactly. We have ex-
panded the elastic fields into perturbation series provid-
ing an approximate solution of the dislocation problem,
the zeroth order being the solution for the case of elastic
isotropy and the higher orders the perturbation arising
from the deviation from isotropy. Closely following the
projection method, the solution of the recursion formulae
is the summation of the singular displacement field of ze-
roth order and non-singular displacement fields of higher
order. This kind of dealing with anisotropy has already
been used in connection with Green’s functions of crys-
tals [24] and quasicrystals [6] and to calculate the fields
of dislocations [24] and cracks [25]. [23] comprises a more
enclosing approach to the handling with elastic anisotropy.

The zeroth order is the solution for elastic isotropy
(µ3 = 0 and µ4 = µ5), which is known (see Appendix B).
The elastic fields can be expanded with respect to the vari-
ables µ3 and µ4−µ5. We shall mark any physical quantity
f being proportional to µm3 (µ4−µ5)n by lower indices mn:
fmn ∼ µm3 (µ4 − µ5)n.

From (21), it is obvious that

D(∇) = D00(∇) + D10(∇) + D01(∇) , (54)

where according to equations (21)

D00(∇) =

[
µ1∇2 + (λ+ µ)∇⊗∇ 0

0 µ5 1∇2

]
. (55)

Because of (18), the decomposition (54) corresponds to
the following decomposition of the elastic tensor C:

C = C00 + C10 + C01 . (56)

For the elastic fields, the perturbation series read

γ =
∑

γmn , ε =
∑

εmn , σ =
∑

σmn . (57)

The conditions, which the different orders must fulfill,
are the following. First, all displacement fields except for
zeroth order must be single-valued:

b =
∮
∂FD

dγ00 , 0 =
∮
∂FD

dγmn (mn 6= 00) . (58)

This is because b belongs to zeroth order. Second, Hooke’s
law (10) must connect strains and stresses in all orders:

σ00 = C00 ε00 ,

σm0 = C00 εm0 + C10 εm−1,0 ,

σ0n = C00 ε0n + C01 ε0,n−1 ,

σmn = C00 εmn + C10 εm−1,n + C01 εm,n−1 .

(59)

Here, the last three equations are valid for m > 0, n > 0
and both m,n > 0, respectively. Third, the divergence of
the stress field of each order must vanish:

divσmn = 0 . (60)

The constitutive equations (58, 59) and (60) can be solved
recursively using the projection method. At this, the ze-
roth order must be treated somewhat different than higher
orders.

Note that γ̂ and ε̂ given by equations (44) and (45)
belong to zeroth order, as the stress field σ̂00 = C00 ε̂.
divσ00 = 0 must be valid, and therefore the projection
method requires the solution of the equations of balance

D00(∇) γ̌00 + div (C00 ε̂)︸ ︷︷ ︸
=f̌00

= 0 . (61)

When omitting the lower indices, this is exactly the proce-
dure of Section 3.1. The solution of (61) leads to the strain
field ε̌00 according to equations (8). Finally, we have

γ00 = γ̌00 + γ̂ , ε00 = ε̌00 + ε̂ , σ00 = C00(ε̌00 + ε̂) .
(62)

The full γ00 is given in Appendix B.
We demonstrate the procedure in case of higher orders

for m0 6= 00 only. The approach in the other cases is
completely analogous. When calculating the elastic fields
of order m0, the solutions of all orders m̃0 with m̃ < m
have already been determined. The condition for the stress
field σm0 to be fulfilled is divσm0 = 0, where σm0 is
determined by the second equation (59). Obviously, the
solution of the equations of balance

D00(∇)γm0 + div (C10 εm−1,0)︸ ︷︷ ︸
=fm0

= 0 (63)

provides the displacement field γm0 of order m0. Equa-
tion (63) is obtained immediately by the action of the
differential operator div on both sides of the second equa-
tion (59) and the fact that D00(∇)γm0 = div (C00 εm0),
with γm0 and εm0 connected by equations (8).

Concerning the perturbation expansions of the fields γ̌,
ε̌, σ̌ and f̌ introduced in Section 3.1, we have γmn = γ̌mn
and εmn = ε̌mn except for zeroth order, where (62) must
be applied. The relation σmn = σ̌mn is true for ordersm+
n > 1, whereas σ00, σ10 and σ01 consist of parts belonging
to σ̂ and σ̌. The expansion of f̌ comprises the three terms
f̌00, f̌10 and f̌01 according to (38) and (56), and therefore
fm0 in (63) is a completely different fictitious body force.
For these reasons, the -̌notation of the projection method
is not appropriate in case of equation (63).

As an important result of the above considerations,
the perturbation expansions of the elastic fields can be
calculated by solving the equations of balance with the
differential operator D00(∇) instead of the full D(∇), a
task which proves to be relatively easy. We have per-
formed our calculations with the help of MapleV2, and
made use of the method described in Section 3.3. There-
fore, all displacement fields are compounded by two parts:
γ̌mn = γ′mn + γ ′′mn for all mn.

2 MapleV Release 4 c©1981-1996 by Waterloo Maple Inc. and
MapleV Release 5.1 c©1981-1998 by Waterloo Maple Inc.
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3.5 Solving the recursion formulae

The calculation of the displacement fields γ′mn can make
use of the fact that they depend on φ only:

γ ′mn(x) ≡ γ ′mn(φ) , (64)

with each component γ′mn,α = cmn,αp eipφ being a real
combination of complex harmonics. Therefore, things are
much easier when expressing all derivatives (55) in terms
of ∂/∂r, ∂/∂φ and ∂/∂z, with ∂/∂r and ∂/∂z vanishing
when applied to the displacement fields (64).

Transforming D00(∇) yields the equations of balance
of zeroth order in the form[
−(λ+ 2µ) + µ ∂2

∂φ2 −(λ+ 3µ) ∂
∂φ

(λ+ 3µ) ∂
∂φ −µ+ (λ+ 2µ) ∂2

∂φ2

][
u′r

u′φ

]
+

[
f̄ur

f̄uφ

]
= 0 ,

µ
∂2

∂φ2
u′z + f̄uz = 0 ,

µ5
∂2

∂φ2
w′k + f̄wk = 0 ,

(65)

where k ∈ {x, y, z}. From (45), all possible (div . . . )|x 6=0

in equations (61, 63) and in the analogous equations for
other orders depend on r like r−2, and in (65) we use the
notation (div . . . )|x 6=0 = 1

r2 f̄ , where the length force f̄
depends on φ only. Equations (65) justify the ansatz (64).
The order indices are omitted here.

In the second step of the calculation of γ̌mn, the diver-
gence of the stress tensor on the dislocation line must be
brought to zero. This leads to the additional displacement
field γ′′mn entering γ̌mn. To perform this second step, the
fields γ′′α resulting from (50) with the prototypical forces
f ′′Lα defined by f ′′Lα,β = δαβ must be available. We have
calculated these γ ′′α with the help of (23) for zeroth order.
They are given in Appendix B. From there it is obvious
that ln r-terms and hereby dependencies on r join the dis-
placement fields.

For the purpose of this paper, we have calculated the
elastic displacement, strain and stress fields of two- and
threefold dislocations up to orders mn where m+ n ≤ 5,
and for fivefold dislocations up to m+ n ≤ 15.

For fivefold dislocations and vanishing phonon-phason-
coupling, the elastic fields are known in closed form [26].
When we neglect the phonon-phason-coupling in our al-
gorithm, then our analytical expressions agree with an ex-
pansion of this closed solution into a perturbation series in
µ4−µ5 up to all calculated orders. But also our algorithm
clearly shows, that neither a closed solution is possible for
finite phonon-phason-coupling nor for other directions of
the dislocation line.

The solution of [26] has been obtained by the more
frequently used generalized Green’s method. The calcu-
lated displacements are applied to atomic models of dis-
locations along a fivefold direction of i-AlPdMn to obtain
dislocation-induced atomic positions. As we shall prove in

Section 4.2, the true fivefold symmetry of the displace-
ment fields is exclusively induced by the phonon-phason-
coupling, but investigating the effect of the phonon-
phason-coupling on the atomic positions is beyond the
scope of this paper.

4 Results and discussion

4.1 General results

The strain and stress fields of all orders behave like 1
r , with

r being the distance from the dislocation line. This is ex-
actly compatible with what one would expect from the
exact solution, provided e.g. by the projection method,
and is also compatible with results from numerical meth-
ods.

Apart from zeroth order, the displacement fields show
positive parity perpendicular to the dislocation line:

γmn(−x) = γmn(x) . (66)

In contrast to this, the strain and stress fields of all orders
exhibit negative parity:

εmn(−x) = −εmn(x) , σmn(−x) = −σmn(x) . (67)

These properties follow from the equations of balance (16)
and (19), respectively, when using the fact that all ficti-
tious forces occurring in the projection method have posi-
tive parity. Note that (67) guarantees for the total torque
acting on the dislocation core to vanish.

The components εumn,33 and εwmn,33 of the strain ten-
sors vanish. This is a consequence of the infinite geom-
etry. Except for the case of twofold screw dislocations,
εumn,33 = εwmn,33 ≡ 0 is not compatible with σumn,33 ≡ 0
and σwmn,33 ≡ 0. Therefore, stresses are present parallel to
the dislocation lines. It is not quite clear how to interpret
these statements in phason space.

The simplest dislocations are the twofold ones.
Twofold edge dislocations induce only displacements per-
pendicular to the dislocation line, and screw dislocations
only parallel to the dislocation line. In case of the other
line directions, Burgers vectors and displacements perpen-
dicular and parallel to the dislocation lines are no longer
decoupled.

For every order mn where m is even, the phononic
displacement, strain and stress fields depend linearly on
bu only, whereas the phasonic fields depend on bw only.
The contrary is true for any order mn, where m is odd.
Additionally, we have u0n ≡ 0, εu0n ≡ 0 and σu0n ≡ 0 for
all n > 0.

In icosahedral quasicrystals, it is, in general, not pos-
sible to compute the elastic fields belonging to a Burgers
vector arising from b by rotation about the dislocation
line from the fields belonging to b by the same rotation.
This method can, for example, be applied to pentagonal
quasicrystals [4].
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4.2 Displacement fields of fivefold dislocations

The following performances refer to the fivefold coordi-
nate systems introduced in Section 3.2. The classification
into phasonic edge and screw dislocations is problematic
in some respects [16]. To our opinion, this discrimination
makes sense, because only phasonic Burgers vectors which
are parallel to the z-axes of the coordinate systems of Sec-
tion 3.2 do not break the n-fold symmetries induced by
phononic n-fold screw dislocations.

The higher displacement corrections shown in the next
two subsections are computed on the circle

√
x2 + y2 =

10 b in the xy-plane. Here, b is the length of the differ-
ent Burgers vectors we have assumed (see Eqs. (68, 69)).
We have chosen this circle, because for our choice of elas-
tic constants, this is the lower limit for no strain tensor
component to exceed an absolute value of 0.1, which we
regard as limit for the validity of linear elasticity. In the
diagrams with displacement components uz parallel to the
dislocation line, the label L stands for the arc length of
this circle. All displacement fields are standardized to have
a vanishing net displacement on the circle, which has been
achieved by adding suitable constant displacement fields.

For the calculation of the elastic fields, the elastic con-
stants of i-AlPdMn have been used. The phononic elas-
tic constants are λ = 85 GPa and µ = 65 GPa [13].
For the phasonic elastic constants, we have taken the
values K1/kT = 0.1/atom and K2/kT = −0.05/atom
and supposed a quenching temperature of 500 ◦C [14].
This leads to our elastic constants µ4 = 0.012 GPa and
µ5 = 0.12 GPa. The phonon-phason-coupling has been
supposed to be µ3 = 1 GPa.

Note that the displacements alone are no good quanti-
ties to measure the elastic deformation qualitatively, but
the strains are. Note also, that the phononic displace-
ment corrections are very small compared to the phononic
Burgers vectors, and that all the corrections shown here
vanish with the phonon-phason-coupling µ3.

4.2.1 Fivefold edge dislocation

We have chosen a six-dimensional, prototypical Burgers
vector

bu,w = [0, b, 0]t . (68)

For the length of the phononic part bu, 1 Å is the right or-
der of magnitude, whereas under plastic deformation the
phasonic part bw increases and becomes up to 100 times
larger than bu [1]. Pure edge or screw dislocations appear
very rarely in reality. Due to the edge type of the disloca-
tion defined by (68), the fivefold symmetry of the disloca-
tion line is broken, as can be seen from the displacement,
strain and stress fields.

Figures 3 and 4 show the xy-components of the
phononic displacements of order mn = 10 and mn =
20. They contribute most to the total correction of
the phononic xy-displacement field, which is shown in
Figure 5. Obviously, the superposition of these two low

0
–5b 5b

–5b

5b

x

y

Fig. 3. Phononic xy-displacement field of the edge disloca-
tion (68), order mn = 10. Magnification of the displacement
vectors: 4000.

0
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–5b

5b
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y

Fig. 4. Phononic xy-displacement field of the edge disloca-
tion (68), order mn = 20. Magnification of the displacement
vectors: 6000.
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–5b

5b–5b x

5b

y

Fig. 5. Phononic xy-displacement field of the edge dislocation
(68), all orders mn with m + n ≤ 15 except zeroth order.
Magnification of the displacement vectors: 2500.
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0

-b

20π10π b0

Fig. 6. Phononic z-displacement field of the edge dislocation
(68), order mn = 20. Magnification of the arrows: 1200.

Lb

zu

b

0

-b

20π10π b0

Fig. 7. Phononic z-displacement field of the edge dislocation
(68), all orders mn with m + n ≤ 15. Magnification of the
arrows: 2000.

orders already provides a good approximation for the full
correction.

In Figures 6 and 7, the z-components of ordermn = 20
and of all orders mn with m+ n ≤ 15 are shown. Again,
the orders mn = 10 and mn = 20 give the essential contri-
bution to the full displacement field. In zeroth order, no z-
component is present. The z-component of order mn = 10
is not shown here. It proves to have a negative cos 2φ-
dependence, which in 2000-fold magnification has a simi-
lar absolute amplitude as the components of Figure 6.

The perfect twofold symmetry of the z-components is
remarkable. This is due to the condition (66), which the
displacement fields have to fulfill. Note that the compo-
nents of Figures 3–5 fulfill (66) also. In addition to this
symmetry, the displacement fields show mirror symmetry
with respect to the xz-plane. As an evident explanation,
the Volterra cut procedure [17,26] should be performed
symmetrically with respect to a cut in the physical xz-
plane, so that this plane remains a mirror plane even af-
ter the introduction of the dislocation (see Figs. 1, 2).
Our results show that the phasonic fields, which have to
be subjected to the associated orthogonal space symmetry
operation, also have this symmetry, as it must be.

The volume contraction ∆V
V = tr (εu) and the eigen-

values of the phononic stress tensor σu of zeroth order do
not change substantially from the contribution of higher
orders.

When considering phasonic components, the typical
displacements are more than a hundred times larger than
their phononic counterparts. The typical phasonic strains
result to be ten times larger than the phononic strains.

We have investigated the convergence behaviour of
our perturbation expansion and also calculated the
exact displacement fields by the numerical Eshelby’s
method [20,21]. From there, the correction displacement

x–5b

5b

0

y

–5b

5b

Fig. 8. Phononic xy-displacement field of the screw dislocation
(69), order mn = 20. Magnification of displacement vectors:
2500.

fields of Figures 5 and 7 are very close to the exact ones.
The same is true for the correction displacement field for
the fivefold screw dislocation, which is discussed below.

4.2.2 Fivefold screw dislocation

The Burgers vector of a screw dislocation has been chosen
to be

bu,w = [0, 0, b]t . (69)

A screw dislocation induces no symmetry breaking paral-
lel to the dislocation line. Therefore, the fivefold symme-
try should be recognizable from the phononic as from the
phasonic displacement fields.

From Figure 8, the fivefold symmetry of the phonon
displacement field is obvious. Again, mn = 20 is the or-
der which provides the largest contribution to the com-
plete xy-displacement field, which is shown in Figure 9.
Although the displacement fields look qualitatively very
similar, slight differences are present in their functional
dependence on x. No z-component is present in order
mn = 20.

In case of phason displacements, the fivefold symme-
try is not easy to recognize. Figure 10 shows the phasonic
displacement field of order mn = 10, which provides the
largest phasonic xy-displacements occurring in any order.
Again, no z-component is present. Note the small magni-
fication, indicating the magnitude of the phason displace-
ments, which are appreciable compared with the length
of the phasonic Burgers vector. The position vectors used
in Figure 10 refer to the physical coordinate system of
Figure 1, but the components of the displacement vec-
tors belong to the phason coordinate system of Figure 2.
Looking at the indices of the projected hyperspace basis
vectors eα in Figures 1 and 2, it is clear, that a rotation
about angle 2π

5 in physical space corresponds to a − 4π
5 -

rotation in phason space. Therefore, fivefold invariance of
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y
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0
–5b 5b

–5b

Fig. 9. Phononic xy-displacement field of the screw disloca-
tion (69), all orders mn with m + n ≤ 15. Magnification of
displacement vectors: 1500.
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Fig. 10. Phasonic xy-displacement field of the screw disloca-
tion (69), order mn = 10. Magnification of the displacement
vectors: 6.

the displacements in Figure 10 refers to a − 4π
5 -rotation of

the vectors and a 2π
5 -rotation of the positions.

The total correction of the displacement field has a z-
component which is shown in Figure 11. Its tenfold sym-
metry is surprising, but it is the only way for the system
to obey the constraint (66). The lowest orders having such
a tenfold z-component in phonon space are mn = 31 and
mn = 40, but the z-component of order mn = 40 is about
11 times as large as in order mn = 31, and provides the
largest z-correction. The graph of Figure 11 is not exactly
symmetric with respect to its extremal points.

The displacement fields exhibit no invariance under
the action of an appropriate mirror plane containing the
z-axis, as in case of the edge dislocation (68).

The eigenvalues of the stress tensor σu, which are con-
stant in zeroth order, become clearly fivefold symmetric
when taking into account higher orders. The main change

Lb
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u

-b

0

20π10π b0

Fig. 11. Phononic z-displacement field of the screw dislocation
(69), all orders mn with m + n ≤ 15 except zeroth order.
Magnification of the graph: 400 000.

away from isotropic behaviour is provided by orders mn
where m + n ≤ 2. Higher orders provide also a fivefold
volume contraction, whereas in zeroth order there is none.

We thank M. Boudard and A. Létoublon for helpful discussions
on phasonic elastic constants. M.R. wants to thank J. Roth
and H. Stark for reading proofs of the first manuscripts of this
paper.

Appendix A: Icosahedral irreducible strains

The icosahedral irreducible strains given here are taken
from [12].

εu1 =
1√
3

(εu11 + εu22 + εu33) ,

εu5 =



1
2
√

3
(−τ2εu11 + 1

τ2 ε
u
22 + (τ + 1

τ )εu33)
1
2 ( 1
τ ε
u
11 − τεu22 + εu33)√

2 εu12√
2 εu23√
2 εu31

 ,

εw4 =
1√
3


εw11 + εw22 + εw33

1
τ ε
w
21 + τεw12

1
τ ε
w
32 + τεw23

1
τ ε
w
13 + τεw31

 ,

εw5 =
1√
6



√
3 (εw11 − εw22)

εw11 + εw22 − 2 εw33√
2 (τεw21 − 1

τ ε
w
12)√

2 (τεw32 − 1
τ ε
w
23)√

2 (τεw13 − 1
τ ε
w
31)

 .

(A.1)
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Appendix B: Elastic displacement fields
of zeroth order

From (44, 61) and (62), the displacement field of zeroth
order is

γ00 =
1

2π

[
bux

{
φ+

(λ + µ)xy
(λ + 2µ)(x2 + y2)

}
+ buy

{ µ

λ+ 2µ
ln

r

r0
+

(λ+ µ) y2

(λ+ 2µ)(x2 + y2)

}
,

buy

{
φ− (λ + µ)xy

(λ + 2µ)(x2 + y2)

}
− bux

{ µ

λ+ 2µ
ln

r

r0
+

(λ+ µ)x2

(λ+ 2µ)(x2 + y2)

}
,

buz φ , b
w
x φ , b

w
y φ , b

w
z φ

]t
. (B.1)

Here, γ00,1 = u00,x, . . . , γ00,6 = w00,z . This displacement
field is identical to the solution presented in [26] when
K2 = 0. K2 = 0 corresponds to identical elastic constants
µ4 = µ5, what is obvious from (C.1). The factor r0 is
introduced for dimensional reasons, and sometimes it is
interpreted as inner cut-off for the linear elasticity [4].

The application of the projection method requires the
knowledge of the solutions of the elastic equations of bal-
ance

D00(∇)γ ′′α + δ(x) f ′′Lα = 0 , (B.2)

where the forces δ(x) f ′′Lα, f ′′Lα,β = δαβ , α, β = 1, . . . , 6,
represent point-like stress sources on the dislocation line
(these prototypical forces are not body forces!). We have
obtained the resulting fields using equation (23) with
G00(x− x′). The γ′′α are

γ′′1 =
1

4π

[
− (λ + 3µ)
µ(λ + 2µ)

ln
r

r0
+

(λ+ µ)x2

µ(λ + 2µ)(x2 + y2)
,

(λ+ µ)xy
µ(λ+ 2µ)(x2 + y2)

, 0, 0, 0, 0
]t
,

γ′′2 =
1

4π

[
(λ+ µ)xy

µ(λ+ 2µ)(x2 + y2)
, − (λ+ 3µ)

µ(λ+ 2µ)
ln

r

r0

+
(λ+ µ) y2

µ(λ + 2µ)(x2 + y2)
, 0, 0, 0, 0

]t
,

γ′′3 =
1

2π

[
0, 0, − 1

µ
ln

r

r0
, 0, 0, 0

]t
,

γ′′4 =
1

2π

[
0, 0, 0, − 1

µ5
ln

r

r0
, 0, 0

]t
,

γ′′5 =
1

2π

[
0, 0, 0, 0, − 1

µ5
ln

r

r0
, 0
]t
,

γ′′6 =
1

2π

[
0, 0, 0, 0, 0, − 1

µ5
ln

r

r0

]t
.

(B.3)

These fields don’t have the unit of a length, but our algo-
rithm multiplies them by appropriate factors to become
displacement fields.

Appendix C: Elastic constants

Different notations concerning the five independent elastic
constants of icosahedral quasicrystals are in use.

To every elastic constant belongs a quadratic invariant
of strain components. Different sets of elastic constants
can be compared with each other, when the respective
invariants are formulated in one and the same coordi-
nate system. This can be achieved by means of coordi-
nate transformations. Relations between different elastic
constants arise from expressing one set of invariants by
another and comparing the coefficients.

All authors we address also use the two Lamé-
constants λ and µ (15), but a different phonon-phason-
coupling and other phasonic elastic constants.

In [11] and [26], the phonon-phason-coupling is
denoted R, and the two phasonic elastic constants are K1

and K2. The coordinate systems in phonon and phason
spaces in these papers are transformed into our fivefold
Ku,w

5 when substituting x → −x, y → −y, z → z and
vice versa. Transforming our elastic tensor C5 in this
manner allows a comparison with the parts R and K of
the elastic tensor given explicitly in [11]. The relations
between the elastic constants are

µ3 =
√

6R , R =
1√
6
µ3 ,

µ4 = K1 − 2K2 , K1 =
1
3

(µ4 + 2µ5) , (C.1)

µ5 = K1 +K2 , K2 = −1
3

(µ4 − µ5) .

The phonon-phason-coupling of [27] is denoted K3

and the phasonic elastic constants are K1 and K2, but
with another meaning as in [11] and [26]. To compare the
elastic energy expression of [27] with our equation (14),
one must substitute εwij by εwji for all i, j. This is because
the definition εwij = ∂wj

∂xi
in [27] is different from our

definition (8). In a second step, this new expression
must be transformed into our coordinate systems of Fig-
ures 1, 2, what is achieved by subjecting all components
εu,wij to the coordinate transformation x → y, y → −x,
z → z. From the elastic energy density in this new form,
we see that the elastic constants are related by

µ3 = −
√

6K3 , K3 = − 1√
6
µ3 ,

µ4 = K1 +
5
3
K2 , K1 =

1
9

(4µ4 + 5µ5) , (C.2)

µ5 = K1 −
4
3
K2 , K2 =

1
3

(µ4 − µ5) .
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